Human Schema Curation via Causal Association Rule Mining
Event schemas are structured knowledge sources defining typical real-world scenarios (e.g., going to an airport). We present a framework for efficient human-in-the-loop construction of a schema library, based on a novel script induction system and a well-crafted interface that allows non-experts to "program" complex event structures. Associated with this work we release a schema library: a machine readable resource of 232 detailed event schemas, each of which describe a distinct typical scenario in terms of its relevant sub-event structure (what happens in the scenario), participants (who plays a role in the scenario), fine-grained typing of each participant, and the implied relational constraints between them. We make our schema library and the SchemaBlocks interface available online.
PDF Abstract LREC (LAW) 2022 PDF LREC (LAW) 2022 Abstract