Scientific Article Summarization Using Citation-Context and Article's Discourse Structure

EMNLP 2015  ·  Arman Cohan, Nazli Goharian ·

We propose a summarization approach for scientific articles which takes advantage of citation-context and the document discourse model. While citations have been previously used in generating scientific summaries, they lack the related context from the referenced article and therefore do not accurately reflect the article's content. Our method overcomes the problem of inconsistency between the citation summary and the article's content by providing context for each citation. We also leverage the inherent scientific article's discourse for producing better summaries. We show that our proposed method effectively improves over existing summarization approaches (greater than 30% improvement over the best performing baseline) in terms of \textsc{Rouge} scores on TAC2014 scientific summarization dataset. While the dataset we use for evaluation is in the biomedical domain, most of our approaches are general and therefore adaptable to other domains.

PDF Abstract EMNLP 2015 PDF EMNLP 2015 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here