SCK: A sparse coding based key-point detector

7 Feb 2018  ·  Thanh Hong-Phuoc, Yifeng He, Ling Guan ·

All current popular hand-crafted key-point detectors such as Harris corner, MSER, SIFT, SURF... rely on some specific pre-designed structures for the detection of corners, blobs, or junctions in an image. In this paper, a novel sparse coding based key-point detector which requires no particular pre-designed structures is presented... The key-point detector is based on measuring the complexity level of each block in an image to decide where a key-point should be. The complexity level of a block is defined as the total number of non-zero components of a sparse representation of that block. Generally, a block constructed with more components is more complex and has greater potential to be a good key-point. Experimental results on Webcam and EF datasets [1, 2] show that the proposed detector achieves significantly high repeatability compared to hand-crafted features, and even outperforms the matching scores of the state-of-the-art learning based detector. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here