Scoring-Aggregating-Planning: Learning task-agnostic priors from interactions and sparse rewards for zero-shot generalization

25 Sep 2019  ·  Huazhe Xu, Boyuan Chen, Yang Gao, Trevor Darrell ·

Humans can learn task-agnostic priors from interactive experience and utilize the priors for novel tasks without any finetuning. In this paper, we propose Scoring-Aggregating-Planning (SAP), a framework that can learn task-agnostic semantics and dynamics priors from arbitrary quality interactions as well as the corresponding sparse rewards and then plan on unseen tasks in zero-shot condition. The framework finds a neural score function for local regional state and action pairs that can be aggregated to approximate the quality of a full trajectory; moreover, a dynamics model that is learned with self-supervision can be incorporated for planning. Many of previous works that leverage interactive data for policy learning either need massive on-policy environmental interactions or assume access to expert data while we can achieve a similar goal with pure off-policy imperfect data. Instantiating our framework results in a generalizable policy to unseen tasks. Experiments demonstrate that the proposed method can outperform baseline methods on a wide range of applications including gridworld, robotics tasks and video games.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here