Script Induction as Association Rule Mining

WS 2020  ·  Anton Belyy, Benjamin Van Durme ·

We show that the count-based Script Induction models of Chambers and Jurafsky (2008) and Jans et al. (2012) can be unified in a general framework of narrative chain likelihood maximization. We provide efficient algorithms based on Association Rule Mining (ARM) and weighted set cover that can discover interesting patterns in the training data and combine them in a reliable and explainable way to predict the missing event. The proposed method, unlike the prior work, does not assume full conditional independence and makes use of higher-order count statistics. We perform the ablation study and conclude that the inductive biases introduced by ARM are conducive to better performance on the narrative cloze test.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here