SE3-Nets: Learning Rigid Body Motion using Deep Neural Networks

8 Jun 2016  ·  Arunkumar Byravan, Dieter Fox ·

We introduce SE3-Nets, which are deep neural networks designed to model and learn rigid body motion from raw point cloud data. Based only on sequences of depth images along with action vectors and point wise data associations, SE3-Nets learn to segment effected object parts and predict their motion resulting from the applied force. Rather than learning point wise flow vectors, SE3-Nets predict SE3 transformations for different parts of the scene. Using simulated depth data of a table top scene and a robot manipulator, we show that the structure underlying SE3-Nets enables them to generate a far more consistent prediction of object motion than traditional flow based networks. Additional experiments with a depth camera observing a Baxter robot pushing objects on a table show that SE3-Nets also work well on real data.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here