SeaFormer++: Squeeze-enhanced Axial Transformer for Mobile Visual Recognition
Since the introduction of Vision Transformers, the landscape of many computer vision tasks (e.g., semantic segmentation), which has been overwhelmingly dominated by CNNs, recently has significantly revolutionized. However, the computational cost and memory requirement renders these methods unsuitable on the mobile device. In this paper, we introduce a new method squeeze-enhanced Axial Transformer (SeaFormer) for mobile visual recognition. Specifically, we design a generic attention block characterized by the formulation of squeeze Axial and detail enhancement. It can be further used to create a family of backbone architectures with superior cost-effectiveness. Coupled with a light segmentation head, we achieve the best trade-off between segmentation accuracy and latency on the ARM-based mobile devices on the ADE20K, Cityscapes, Pascal Context and COCO-Stuff datasets. Critically, we beat both the mobilefriendly rivals and Transformer-based counterparts with better performance and lower latency without bells and whistles. Furthermore, we incorporate a feature upsampling-based multi-resolution distillation technique, further reducing the inference latency of the proposed framework. Beyond semantic segmentation, we further apply the proposed SeaFormer architecture to image classification and object detection problems, demonstrating the potential of serving as a versatile mobile-friendly backbone. Our code and models are made publicly available at https://github.com/fudan-zvg/SeaFormer.
PDF Abstract