Second-Order Forward-Mode Automatic Differentiation for Optimization

19 Aug 2024  ·  Adam D. Cobb, Atılım Güneş Baydin, Barak A. Pearlmutter, Susmit Jha ·

This paper introduces a second-order hyperplane search, a novel optimization step that generalizes a second-order line search from a line to a $k$-dimensional hyperplane. This, combined with the forward-mode stochastic gradient method, yields a second-order optimization algorithm that consists of forward passes only, completely avoiding the storage overhead of backpropagation. Unlike recent work that relies on directional derivatives (or Jacobian--Vector Products, JVPs), we use hyper-dual numbers to jointly evaluate both directional derivatives and their second-order quadratic terms. As a result, we introduce forward-mode weight perturbation with Hessian information (FoMoH). We then use FoMoH to develop a novel generalization of line search by extending it to a hyperplane search. We illustrate the utility of this extension and how it might be used to overcome some of the recent challenges of optimizing machine learning models without backpropagation. Our code is open-sourced at https://github.com/SRI-CSL/fomoh.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here