Second-Order Guarantees of Stochastic Gradient Descent in Non-Convex Optimization

19 Aug 2019  ·  Stefan Vlaski, Ali H. Sayed ·

Recent years have seen increased interest in performance guarantees of gradient descent algorithms for non-convex optimization. A number of works have uncovered that gradient noise plays a critical role in the ability of gradient descent recursions to efficiently escape saddle-points and reach second-order stationary points. Most available works limit the gradient noise component to be bounded with probability one or sub-Gaussian and leverage concentration inequalities to arrive at high-probability results. We present an alternate approach, relying primarily on mean-square arguments and show that a more relaxed relative bound on the gradient noise variance is sufficient to ensure efficient escape from saddle-points without the need to inject additional noise, employ alternating step-sizes or rely on a global dispersive noise assumption, as long as a gradient noise component is present in a descent direction for every saddle-point.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here