Second-order Information in First-order Optimization Methods

20 Dec 2019  ·  Yuzheng Hu, Licong Lin, Shange Tang ·

In this paper, we try to uncover the second-order essence of several first-order optimization methods. For Nesterov Accelerated Gradient, we rigorously prove that the algorithm makes use of the difference between past and current gradients, thus approximates the Hessian and accelerates the training. For adaptive methods, we related Adam and Adagrad to a powerful technique in computation statistics---Natural Gradient Descent. These adaptive methods can in fact be treated as relaxations of NGD with only a slight difference lying in the square root of the denominator in the update rules. Skeptical about the effect of such difference, we design a new algorithm---AdaSqrt, which removes the square root in the denominator and scales the learning rate by sqrt(T). Surprisingly, our new algorithm is comparable to various first-order methods(such as SGD and Adam) on MNIST and even beats Adam on CIFAR-10! This phenomenon casts doubt on the convention view that the square root is crucial and training without it will lead to terrible performance. As far as we have concerned, so long as the algorithm tries to explore second or even higher information of the loss surface, then proper scaling of the learning rate alone will guarantee fast training and good generalization performance. To the best of our knowledge, this is the first paper that seriously considers the necessity of square root among all adaptive methods. We believe that our work can shed light on the importance of higher-order information and inspire the design of more powerful algorithms in the future.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods