Second Order Probabilities for Uncertain and Conflicting Evidence

27 Mar 2013  ·  Gerhard Paaß ·

In this paper the elicitation of probabilities from human experts is considered as a measurement process, which may be disturbed by random 'measurement noise'. Using Bayesian concepts a second order probability distribution is derived reflecting the uncertainty of the input probabilities. The algorithm is based on an approximate sample representation of the basic probabilities. This sample is continuously modified by a stochastic simulation procedure, the Metropolis algorithm, such that the sequence of successive samples corresponds to the desired posterior distribution. The procedure is able to combine inconsistent probabilities according to their reliability and is applicable to general inference networks with arbitrary structure. Dempster-Shafer probability mass functions may be included using specific measurement distributions. The properties of the approach are demonstrated by numerical experiments.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here