Second-Order Stochastic Optimization for Machine Learning in Linear Time

12 Feb 2016  ·  Naman Agarwal, Brian Bullins, Elad Hazan ·

First-order stochastic methods are the state-of-the-art in large-scale machine learning optimization owing to efficient per-iteration complexity. Second-order methods, while able to provide faster convergence, have been much less explored due to the high cost of computing the second-order information. In this paper we develop second-order stochastic methods for optimization problems in machine learning that match the per-iteration cost of gradient based methods, and in certain settings improve upon the overall running time over popular first-order methods. Furthermore, our algorithm has the desirable property of being implementable in time linear in the sparsity of the input data.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here