Second-Order Stochastic Optimization for Machine Learning in Linear Time

12 Feb 2016Naman AgarwalBrian BullinsElad Hazan

First-order stochastic methods are the state-of-the-art in large-scale machine learning optimization owing to efficient per-iteration complexity. Second-order methods, while able to provide faster convergence, have been much less explored due to the high cost of computing the second-order information... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet