Secrecy Performance for Finite-Alphabet Inputs Over Fluctuating Two-Ray Channels in FDA Communications

11 Jun 2020  ·  Chongjun Ouyang, Sheng Wu, Chunxiao Jiang, Derrick Wing Kwan Ng, Hongwen Yang ·

To provide system design insights for practical communication systems equipped with the frequency diverse array (FDA), this paper investigates the secrecy performance of FDA systems exploiting finite-alphabet inputs over fluctuating two-ray (FTR) fading channels. More specifically, closed-form expressions for the average secrecy rate (ASR) and the secrecy outage probability (SOP) are derived, while their correctness is confirmed by numerical simulations. In addition, we perform asymptotic analysis to quantify the secrecy performance gap between Gaussian and finite-alphabet inputs, for a sufficiently large average signal-to-noise ratio (SNR) of the main channel. Compared with Gaussian inputs-based research, this letter focuses on practical scenarios which sheds lights on properties of FDA systems.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here