Secure Beamforming for Multiple Intelligent Reflecting Surfaces Aided mmWave Systems

26 Jun 2020  ·  Yue Xiu, Jun Zhao, Chau Yuen, Zhongpei Zhang, Guan Gui ·

In this letter, secure beamforming in a multiple intelligent reflecting surfaces (IRSs)-aided millimeter-wave (mmWave) system is investigated. In this system, the secrecy rate is maximized by controlling the on-off status of each IRS as well as optimizing the phase shift matrix of the IRSs. This problem is posed as a joint optimization problem of transmit beamforming and IRS control, whose goal is to maximize the secrecy rate under the total transmission power and unit-modulus constraints. The problem is difficult to solve optimally due to the nonconvexity of constraint conditions and coupled variables. To deal with this problem, we propose an alternating optimization (AO)-based algorithm based on successive convex approximation (SCA) and manifold optimization (MO) technologies. Numerical simulations show that the proposed AO-based algorithm can effectively improve the secrecy rate and outperforms the traditional single IRS-aided scheme.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here