Secure Detection of Image Manipulation by means of Random Feature Selection

We address the problem of data-driven image manipulation detection in the presence of an attacker with limited knowledge about the detector. Specifically, we assume that the attacker knows the architecture of the detector, the training data and the class of features V the detector can rely on... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet