Seeing Under the Cover: A Physics Guided Learning Approach for In-Bed Pose Estimation

3 Jul 2019Shuangjun LiuSarah Ostadabbas

Human in-bed pose estimation has huge practical values in medical and healthcare applications yet still mainly relies on expensive pressure mapping (PM) solutions. In this paper, we introduce our novel physics inspired vision-based approach that addresses the challenging issues associated with the in-bed pose estimation problem including monitoring a fully covered person in complete darkness... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet