SeGMA: Semi-Supervised Gaussian Mixture Auto-Encoder

21 Jun 2019  ·  Marek Śmieja, Maciej Wołczyk, Jacek Tabor, Bernhard C. Geiger ·

We propose a semi-supervised generative model, SeGMA, which learns a joint probability distribution of data and their classes and which is implemented in a typical Wasserstein auto-encoder framework. We choose a mixture of Gaussians as a target distribution in latent space, which provides a natural splitting of data into clusters. To connect Gaussian components with correct classes, we use a small amount of labeled data and a Gaussian classifier induced by the target distribution. SeGMA is optimized efficiently due to the use of Cramer-Wold distance as a maximum mean discrepancy penalty, which yields a closed-form expression for a mixture of spherical Gaussian components and thus obviates the need of sampling. While SeGMA preserves all properties of its semi-supervised predecessors and achieves at least as good generative performance on standard benchmark data sets, it presents additional features: (a) interpolation between any pair of points in the latent space produces realistically-looking samples; (b) combining the interpolation property with disentangled class and style variables, SeGMA is able to perform a continuous style transfer from one class to another; (c) it is possible to change the intensity of class characteristics in a data point by moving the latent representation of the data point away from specific Gaussian components.

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here