SeGMA: Semi-Supervised Gaussian Mixture Auto-Encoder

21 Jun 2019Marek ŚmiejaMaciej WołczykJacek TaborBernhard C. Geiger

We propose a semi-supervised generative model, SeGMA, which learns a joint probability distribution of data and their classes and which is implemented in a typical Wasserstein auto-encoder framework. We choose a mixture of Gaussians as a target distribution in latent space, which provides a natural splitting of data into clusters... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet