Selecting Treatment Effects Models for Domain Adaptation Using Causal Knowledge

Selecting causal inference models for estimating individualized treatment effects (ITE) from observational data presents a unique challenge since the counterfactual outcomes are never observed. The problem is challenged further in the unsupervised domain adaptation (UDA) setting where we only have access to labeled samples in the source domain, but desire selecting a model that achieves good performance on a target domain for which only unlabeled samples are available... (read more)

PDF Abstract PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

Causal Inference