Self-Adaptively Learning to Demoire from Focused and Defocused Image Pairs

3 Nov 2020  ·  Lin Liu, Shanxin Yuan, Jianzhuang Liu, Liping Bao, Gregory Slabaugh, Qi Tian ·

Moire artifacts are common in digital photography, resulting from the interference between high-frequency scene content and the color filter array of the camera. Existing deep learning-based demoireing methods trained on large scale datasets are limited in handling various complex moire patterns, and mainly focus on demoireing of photos taken of digital displays. Moreover, obtaining moire-free ground-truth in natural scenes is difficult but needed for training. In this paper, we propose a self-adaptive learning method for demoireing a high-frequency image, with the help of an additional defocused moire-free blur image. Given an image degraded with moire artifacts and a moire-free blur image, our network predicts a moire-free clean image and a blur kernel with a self-adaptive strategy that does not require an explicit training stage, instead performing test-time adaptation. Our model has two sub-networks and works iteratively. During each iteration, one sub-network takes the moire image as input, removing moire patterns and restoring image details, and the other sub-network estimates the blur kernel from the blur image. The two sub-networks are jointly optimized. Extensive experiments demonstrate that our method outperforms state-of-the-art methods and can produce high-quality demoired results. It can generalize well to the task of removing moire artifacts caused by display screens. In addition, we build a new moire dataset, including images with screen and texture moire artifacts. As far as we know, this is the first dataset with real texture moire patterns.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here