Self-Calibration Supported Robust Projective Structure-from-Motion

4 Jul 2020  ·  Rui Gong, Danda Pani Paudel, Ajad Chhatkuli, Luc van Gool ·

Typical Structure-from-Motion (SfM) pipelines rely on finding correspondences across images, recovering the projective structure of the observed scene and upgrading it to a metric frame using camera self-calibration constraints. Solving each problem is mainly carried out independently from the others. For instance, camera self-calibration generally assumes correct matches and a good projective reconstruction have been obtained. In this paper, we propose a unified SfM method, in which the matching process is supported by self-calibration constraints. We use the idea that good matches should yield a valid calibration. In this process, we make use of the Dual Image of Absolute Quadric projection equations within a multiview correspondence framework, in order to obtain robust matching from a set of putative correspondences. The matching process classifies points as inliers or outliers, which is learned in an unsupervised manner using a deep neural network. Together with theoretical reasoning why the self-calibration constraints are necessary, we show experimental results demonstrating robust multiview matching and accurate camera calibration by exploiting these constraints.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here