Self-driving scale car trained by Deep reinforcement learning

8 Sep 2019  ·  Qi Zhang, Tao Du, Changzheng Tian ·

The self-driving based on deep reinforcement learning, as the most important application of artificial intelligence, has become a popular topic. Most of the current self-driving methods focus on how to directly learn end-to-end self-driving control strategy from the raw sensory data. Essentially, this control strategy can be considered as a mapping between images and driving behavior, which usually faces a problem of low generalization ability. To improve the generalization ability for the driving behavior, the reinforcement learning method requires extrinsic reward from the real environment, which may damage the car. In order to obtain a good generalization ability in safety, a virtual simulation environment that can be constructed different driving scene is designed by Unity. A theoretical model is established and analyzed in the virtual simulation environment, and it is trained by double Deep Q-network. Then, the trained model is migrated to a scale car in real world. This process is also called a sim2real method. The sim2real training method efficiently handle the these two problems. The simulations and experiments are carried out to evaluate the performance and effectiveness of the proposed algorithm. Finally, it is demonstrated that the scale car in real world obtain the capability for autonomous driving.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here