Self-Optimizing Feature Transformation

16 Sep 2022  ·  Meng Xiao, Dongjie Wang, Min Wu, Kunpeng Liu, Hui Xiong, Yuanchun Zhou, Yanjie Fu ·

Feature transformation aims to extract a good representation (feature) space by mathematically transforming existing features. It is crucial to address the curse of dimensionality, enhance model generalization, overcome data sparsity, and expand the availability of classic models. Current research focuses on domain knowledge-based feature engineering or learning latent representations; nevertheless, these methods are not entirely automated and cannot produce a traceable and optimal representation space. When rebuilding a feature space for a machine learning task, can these limitations be addressed concurrently? In this extension study, we present a self-optimizing framework for feature transformation. To achieve a better performance, we improved the preliminary work by (1) obtaining an advanced state representation for enabling reinforced agents to comprehend the current feature set better; and (2) resolving Q-value overestimation in reinforced agents for learning unbiased and effective policies. Finally, to make experiments more convincing than the preliminary work, we conclude by adding the outlier detection task with five datasets, evaluating various state representation approaches, and comparing different training strategies. Extensive experiments and case studies show that our work is more effective and superior.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here