Self-Organization and Artificial Life

14 Mar 2019  ·  Carlos Gershenson, Vito Trianni, Justin Werfel, Hiroki Sayama ·

Self-organization can be broadly defined as the ability of a system to display ordered spatio-temporal patterns solely as the result of the interactions among the system components. Processes of this kind characterize both living and artificial systems, making self-organization a concept that is at the basis of several disciplines, from physics to biology and engineering. Placed at the frontiers between disciplines, Artificial Life (ALife) has heavily borrowed concepts and tools from the study of self-organization, providing mechanistic interpretations of life-like phenomena as well as useful constructivist approaches to artificial system design. Despite its broad usage within ALife, the concept of self-organization has been often excessively stretched or misinterpreted, calling for a clarification that could help with tracing the borders between what can and cannot be considered self-organization. In this review, we discuss the fundamental aspects of self-organization and list the main usages within three primary ALife domains, namely "soft" (mathematical/computational modeling), "hard" (physical robots), and "wet" (chemical/biological systems) ALife. We also provide a classification to locate this research. Finally, we discuss the usefulness of self-organization and related concepts within ALife studies, point to perspectives and challenges for future research, and list open questions. We hope that this work will motivate discussions related to self-organization in ALife and related fields.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here