Self-regularizing restricted Boltzmann machines

9 Dec 2019Orestis Loukas

Focusing on the grand-canonical extension of the ordinary restricted Boltzmann machine, we suggest an energy-based model for feature extraction that uses a layer of hidden units with varying size. By an appropriate choice of the chemical potential and given a sufficiently large number of hidden resources the generative model is able to efficiently deduce the optimal number of hidden units required to learn the target data with exceedingly small generalization error... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet