Self-Supervised Domain-Aware Generative Network for Generalized Zero-Shot Learning

CVPR 2020 Jiamin Wu Tianzhu Zhang Zheng-Jun Zha Jiebo Luo Yongdong Zhang Feng Wu

Generalized Zero-Shot Learning (GZSL) aims at recognizing both seen and unseen classes by constructing correspondence between visual and semantic embedding. However, existing methods have severely suffered from the strong bias problem, where unseen instances in target domain tend to be recognized as seen classes in source domain... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet