Self-Supervised Learning for MRI Reconstruction with a Parallel Network Training Framework

26 Sep 2021  ·  Chen Hu, Cheng Li, Haifeng Wang, Qiegen Liu, Hairong Zheng, Shanshan Wang ·

Image reconstruction from undersampled k-space data plays an important role in accelerating the acquisition of MR data, and a lot of deep learning-based methods have been exploited recently. Despite the achieved inspiring results, the optimization of these methods commonly relies on the fully-sampled reference data, which are time-consuming and difficult to collect. To address this issue, we propose a novel self-supervised learning method. Specifically, during model optimization, two subsets are constructed by randomly selecting part of k-space data from the undersampled data and then fed into two parallel reconstruction networks to perform information recovery. Two reconstruction losses are defined on all the scanned data points to enhance the network's capability of recovering the frequency information. Meanwhile, to constrain the learned unscanned data points of the network, a difference loss is designed to enforce consistency between the two parallel networks. In this way, the reconstruction model can be properly trained with only the undersampled data. During the model evaluation, the undersampled data are treated as the inputs and either of the two trained networks is expected to reconstruct the high-quality results. The proposed method is flexible and can be employed in any existing deep learning-based method. The effectiveness of the method is evaluated on an open brain MRI dataset. Experimental results demonstrate that the proposed self-supervised method can achieve competitive reconstruction performance compared to the corresponding supervised learning method at high acceleration rates (4 and 8). The code is publicly available at \url{https://github.com/chenhu96/Self-Supervised-MRI-Reconstruction}.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here