Self-Supervised Log Parsing

17 Mar 2020  ·  Sasho Nedelkoski, Jasmin Bogatinovski, Alexander Acker, Jorge Cardoso, Odej Kao ·

Logs are extensively used during the development and maintenance of software systems. They collect runtime events and allow tracking of code execution, which enables a variety of critical tasks such as troubleshooting and fault detection. However, large-scale software systems generate massive volumes of semi-structured log records, posing a major challenge for automated analysis. Parsing semi-structured records with free-form text log messages into structured templates is the first and crucial step that enables further analysis. Existing approaches rely on log-specific heuristics or manual rule extraction. These are often specialized in parsing certain log types, and thus, limit performance scores and generalization. We propose a novel parsing technique called NuLog that utilizes a self-supervised learning model and formulates the parsing task as masked language modeling (MLM). In the process of parsing, the model extracts summarizations from the logs in the form of a vector embedding. This allows the coupling of the MLM as pre-training with a downstream anomaly detection task. We evaluate the parsing performance of NuLog on 10 real-world log datasets and compare the results with 12 parsing techniques. The results show that NuLog outperforms existing methods in parsing accuracy with an average of 99% and achieves the lowest edit distance to the ground truth templates. Additionally, two case studies are conducted to demonstrate the ability of the approach for log-based anomaly detection in both supervised and unsupervised scenario. The results show that NuLog can be successfully used to support troubleshooting tasks. The implementation is available at https://github.com/nulog/nulog.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here