Self-Supervised Low-Light Image Enhancement Using Discrepant Untrained Network Priors

This paper proposes a deep learning method for low-light image enhancement, which exploits the generation capability of Neural Networks (NNs) while requiring no training samples except the input image itself. Based on the Retinex decomposition model, the reflectance and illumination of a low-light image are parameterized by two untrained NNs. The ambiguity between the two layers is resolved by the discrepancy between the two NNs in terms of architecture and capacity, while the complex noise with spatially-varying characteristics is handled by an illumination-adaptive self-supervised denoising module. The enhancement is done by jointly optimizing the Retinex decomposition and the illumination adjustment. Extensive experiments show that the proposed method not only outperforms existing non-learning-based and unsupervised-learning-based methods, but also competes favorably with some supervised-learning-based methods in extreme low-light conditions.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here