Self-Supervised Monocular Image Depth Learning and Confidence Estimation

14 Mar 2018  ·  Long Chen, Wen Tang, Nigel John ·

Convolutional Neural Networks (CNNs) need large amounts of data with ground truth annotation, which is a challenging problem that has limited the development and fast deployment of CNNs for many computer vision tasks. We propose a novel framework for depth estimation from monocular images with corresponding confidence in a self-supervised manner... A fully differential patch-based cost function is proposed by using the Zero-Mean Normalized Cross Correlation (ZNCC) that takes multi-scale patches as a matching strategy. This approach greatly increases the accuracy and robustness of the depth learning. In addition, the proposed patch-based cost function can provide a 0 to 1 confidence, which is then used to supervise the training of a parallel network for confidence map learning and estimation. Evaluation on KITTI dataset shows that our method outperforms the state-of-the-art results. read more

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here