Self-Supervised Object-in-Gripper Segmentation from Robotic Motions

11 Feb 2020  ·  Wout Boerdijk, Martin Sundermeyer, Maximilian Durner, Rudolph Triebel ·

Accurate object segmentation is a crucial task in the context of robotic manipulation. However, creating sufficient annotated training data for neural networks is particularly time consuming and often requires manual labeling. To this end, we propose a simple, yet robust solution for learning to segment unknown objects grasped by a robot. Specifically, we exploit motion and temporal cues in RGB video sequences. Using optical flow estimation we first learn to predict segmentation masks of our given manipulator. Then, these annotations are used in combination with motion cues to automatically distinguish between background, manipulator and unknown, grasped object. In contrast to existing systems our approach is fully self-supervised and independent of precise camera calibration, 3D models or potentially imperfect depth data. We perform a thorough comparison with alternative baselines and approaches from literature. The object masks and views are shown to be suitable training data for segmentation networks that generalize to novel environments and also allow for watertight 3D reconstruction.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here