Road Scene Understanding by Occupancy Grid Learning from Sparse Radar Clusters using Semantic Segmentation

31 Mar 2019  ·  Liat Sless, Gilad Cohen, Bat El Shlomo, Shaul Oron ·

Occupancy grid mapping is an important component in road scene understanding for autonomous driving. It encapsulates information of the drivable area, road obstacles and enables safe autonomous driving. Radars are an emerging sensor in autonomous vehicle vision, becoming more widely used due to their long range sensing, low cost, and robustness to severe weather conditions. Despite recent advances in deep learning technology, occupancy grid mapping from radar data is still mostly done using classical filtering approaches.In this work, we propose learning the inverse sensor model used for occupancy grid mapping from clustered radar data. This is done in a data driven approach that leverages computer vision techniques. This task is very challenging due to data sparsity and noise characteristics of the radar sensor. The problem is formulated as a semantic segmentation task and we show how it can be learned using lidar data for generating ground truth. We show both qualitatively and quantitatively that our learned occupancy net outperforms classic methods by a large margin using the recently released NuScenes real-world driving data.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here