Paper

Self-Supervised Visual Planning with Temporal Skip Connections

In order to autonomously learn wide repertoires of complex skills, robots must be able to learn from their own autonomously collected data, without human supervision. One learning signal that is always available for autonomously collected data is prediction: if a robot can learn to predict the future, it can use this predictive model to take actions to produce desired outcomes, such as moving an object to a particular location... (read more)

Results in Papers With Code
(↓ scroll down to see all results)