Self-training Converts Weak Learners to Strong Learners in Mixture Models

25 Jun 2021  ·  Spencer Frei, Difan Zou, Zixiang Chen, Quanquan Gu ·

We consider a binary classification problem when the data comes from a mixture of two rotationally symmetric distributions satisfying concentration and anti-concentration properties enjoyed by log-concave distributions among others. We show that there exists a universal constant $C_{\mathrm{err}}>0$ such that if a pseudolabeler $\boldsymbol{\beta}_{\mathrm{pl}}$ can achieve classification error at most $C_{\mathrm{err}}$, then for any $\varepsilon>0$, an iterative self-training algorithm initialized at $\boldsymbol{\beta}_0 := \boldsymbol{\beta}_{\mathrm{pl}}$ using pseudolabels $\hat y = \mathrm{sgn}(\langle \boldsymbol{\beta}_t, \mathbf{x}\rangle)$ and using at most $\tilde O(d/\varepsilon^2)$ unlabeled examples suffices to learn the Bayes-optimal classifier up to $\varepsilon$ error, where $d$ is the ambient dimension. That is, self-training converts weak learners to strong learners using only unlabeled examples. We additionally show that by running gradient descent on the logistic loss one can obtain a pseudolabeler $\boldsymbol{\beta}_{\mathrm{pl}}$ with classification error $C_{\mathrm{err}}$ using only $O(d)$ labeled examples (i.e., independent of $\varepsilon$). Together our results imply that mixture models can be learned to within $\varepsilon$ of the Bayes-optimal accuracy using at most $O(d)$ labeled examples and $\tilde O(d/\varepsilon^2)$ unlabeled examples by way of a semi-supervised self-training algorithm.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here