Self-triggered MPC robust to bounded packet loss via a min-max approach: extended version

1 Apr 2022  ·  Stefan Wildhagen, Matthias Pezzutto, Luca Schenato, Frank Allgöwer ·

Networked Control Systems typically come with a limited communication bandwidth and thus require special care when designing the underlying control and triggering law. A method that allows to consider hard constraints on the communication traffic as well as on states and inputs is self-triggered model predictive control (MPC). In this scheme, the optimal length of the sampling interval is determined proactively using predictions of the system behavior. However, previous formulations of self-triggered MPC have neglected the widespread phenomenon of packet loss, such that these approaches might fail in practice. In this paper, we present a novel self-triggered MPC scheme which is robust to bounded packet loss by virtue of a min-max optimization problem. We prove recursive feasibility, constraint satisfaction and convergence to the origin for any possible packet loss realization consistent with the boundedness constraint, and demonstrate the advantages of the proposed scheme in a numerical example.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here