Semantic annotation of French corpora: animacy and verb semantic classes

LREC 2012  ·  Juliette Thuilier, Laurence Danlos ·

This paper presents a first corpus of French annotated for animacy and for verb semantic classes. The resource consists of 1,346 sentences extracted from three different corpora: the French Treebank (Abeill{\'e} and Barrier, 2004), the Est-R{\'e}publicain corpus (CNRTL) and the ESTER corpus (ELRA). It is a set of parsed sentences, containing a verbal head subcategorizing two complements, with annotations on the verb and on both complements, in the TIGER XML format (Mengel and Lezius, 2000). The resource was manually annotated and manually corrected by three annotators. Animacy has been annotated following the categories of Zaenen et al. (2004). Measures of inter-annotator agreement are good (Multi-pi = 0.82 and Multi-kappa = 0.86 (k = 3, N = 2360)). As for verb semantic classes, we used three of the five levels of classification of an existing dictionary: 'Les Verbes du Fran{\c{c}}ais' (Dubois and Dubois-Charlier, 1997). For the higher level (generic classes), the measures of agreement are Multi-pi = 0.84 and Multi-kappa = 0.87 (k = 3, N = 1346). The inter-annotator agreements show that the annotated data are reliable for both animacy and verbal semantic classes.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here