Semantic denoising autoencoders for retinal optical coherence tomography

23 Mar 2019  ·  Max-Heinrich Laves, Sontje Ihler, Lüder Alexander Kahrs, Tobias Ortmaier ·

Noise in speckle-prone optical coherence tomography tends to obfuscate important details necessary for medical diagnosis. In this paper, a denoising approach that preserves disease characteristics on retinal optical coherence tomography images in ophthalmology is presented. By combining a deep convolutional autoencoder with a priorly trained ResNet image classifier as regularizer, the perceptibility of delicate details is encouraged and only information-less background noise is filtered out. With our approach, higher peak signal-to-noise ratios with $ \mathrm{PSNR} = 31.2\,\mathrm{dB} $ and higher classification accuracy of $\mathrm{ACC} = 85.0\,\%$ can be achieved for denoised images compared to state-of-the-art denoising with $ \mathrm{PSNR} = 29.4\,\mathrm{dB} $ or $\mathrm{ACC} = 70.3\,\%$, depending on the method. It is shown that regularized autoencoders are capable of denoising retinal OCT images without blurring details of diseases.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods