Semantic-Driven Topic Modeling Using Transformer-Based Embeddings and Clustering Algorithms

30 Sep 2024  ·  Melkamu Abay Mersha, Mesay Gemeda Yigezu, Jugal Kalita ·

Topic modeling is a powerful technique to discover hidden topics and patterns within a collection of documents without prior knowledge. Traditional topic modeling and clustering-based techniques encounter challenges in capturing contextual semantic information. This study introduces an innovative end-to-end semantic-driven topic modeling technique for the topic extraction process, utilizing advanced word and document embeddings combined with a powerful clustering algorithm. This semantic-driven approach represents a significant advancement in topic modeling methodologies. It leverages contextual semantic information to extract coherent and meaningful topics. Specifically, our model generates document embeddings using pre-trained transformer-based language models, reduces the dimensions of the embeddings, clusters the embeddings based on semantic similarity, and generates coherent topics for each cluster. Compared to ChatGPT and traditional topic modeling algorithms, our model provides more coherent and meaningful topics.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here