Evolving Graphs with Semantic Neutral Drift

24 Oct 2018  ·  Timothy Atkinson, Detlef Plump, Susan Stepney ·

We introduce the concept of Semantic Neutral Drift (SND) for genetic programming (GP), where we exploit equivalence laws to design semantics preserving mutations guaranteed to preserve individuals' fitness scores. A number of digital circuit benchmark problems have been implemented with rule-based graph programs and empirically evaluated, demonstrating quantitative improvements in evolutionary performance. Analysis reveals that the benefits of the designed SND reside in more complex processes than simple growth of individuals, and that there are circumstances where it is beneficial to choose otherwise detrimental parameters for a GP system if that facilitates the inclusion of SND.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here