Semantic Projection Network for Zero- and Few-Label Semantic Segmentation

CVPR 2019 Yongqin Xian Subhabrata Choudhury Yang He Bernt Schiele Zeynep Akata

Semantic segmentation is one of the most fundamental problems in computer vision and pixel-level labelling in this context is particularly expensive. Hence, there have been several attempts to reduce the annotation effort such as learning from image level labels and bounding box annotations... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet