Semi- and Weakly-supervised Human Pose Estimation

4 Jun 2019Norimichi UkitaYusuke Uematsu

For human pose estimation in still images, this paper proposes three semi- and weakly-supervised learning schemes. While recent advances of convolutional neural networks improve human pose estimation using supervised training data, our focus is to explore the semi- and weakly-supervised schemes... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.