Semi-supervised Kernel Metric Learning Using Relative Comparisons

1 Dec 2016  ·  Ehsan Amid, Aristides Gionis, Antti Ukkonen ·

We consider the problem of metric learning subject to a set of constraints on relative-distance comparisons between the data items. Such constraints are meant to reflect side-information that is not expressed directly in the feature vectors of the data items. The relative-distance constraints used in this work are particularly effective in expressing structures at finer level of detail than must-link (ML) and cannot-link (CL) constraints, which are most commonly used for semi-supervised clustering. Relative-distance constraints are thus useful in settings where providing an ML or a CL constraint is difficult because the granularity of the true clustering is unknown. Our main contribution is an efficient algorithm for learning a kernel matrix using the log determinant divergence --- a variant of the Bregman divergence --- subject to a set of relative-distance constraints. The learned kernel matrix can then be employed by many different kernel methods in a wide range of applications. In our experimental evaluations, we consider a semi-supervised clustering setting and show empirically that kernels found by our algorithm yield clusterings of higher quality than existing approaches that either use ML/CL constraints or a different means to implement the supervision using relative comparisons.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here