Semi-Supervised Learning on Graphs Based on Local Label Distributions

15 Feb 2018  ·  Evgeniy Faerman, Felix Borutta, Julian Busch, Matthias Schubert ·

Most approaches that tackle the problem of node classification consider nodes to be similar, if they have shared neighbors or are close to each other in the graph. Recent methods for attributed graphs additionally take attributes of neighboring nodes into account. We argue that the class labels of the neighbors bear important information and considering them helps to improve classification quality. Two nodes which are similar based on class labels in their neighborhood do not need to be close-by in the graph and may even belong to different connected components. In this work, we propose a novel approach for the semi-supervised node classification. Precisely, we propose a new node embedding which is based on the class labels in the local neighborhood of a node. We show that this is a different setting from attribute-based embeddings and thus, we propose a new method to learn label-based node embeddings which can mirror a variety of relations between the class labels of neighboring nodes. Our experimental evaluation demonstrates that our new methods can significantly improve the prediction quality on real world data sets.

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here