Semi-supervised Spectral Clustering for Image Set Classification

CVPR 2014 Arif MahmoodAjmal MianRobyn Owens

We present an image set classification algorithm based on unsupervised clustering of labeled training and unlabeled test data where labels are only used in the stopping criterion. The probability distribution of each class over the set of clusters is used to define a true set based similarity measure... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet