Semi-supervised Zero-Shot Learning by a Clustering-based Approach

29 May 2016Seyed Mohsen ShojaeeMahdieh Soleymani Baghshah

In some of object recognition problems, labeled data may not be available for all categories. Zero-shot learning utilizes auxiliary information (also called signatures) describing each category in order to find a classifier that can recognize samples from categories with no labeled instance... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet