Semi-WTC: A Practical Semi-supervised Framework for Attack Categorization through Weight-Task Consistency

19 May 2022  ·  Zihan Li, Wentao Chen, Zhiqing Wei, Xingqi Luo, Bing Su ·

Supervised learning has been widely used for attack categorization, requiring high-quality data and labels. However, the data is often imbalanced and it is difficult to obtain sufficient annotations. Moreover, supervised models are subject to real-world deployment issues, such as defending against unseen artificial attacks. To tackle the challenges, we propose a semi-supervised fine-grained attack categorization framework consisting of an encoder and a two-branch structure and this framework can be generalized to different supervised models. The multilayer perceptron with residual connection is used as the encoder to extract features and reduce the complexity. The Recurrent Prototype Module (RPM) is proposed to train the encoder effectively in a semi-supervised manner. To alleviate the data imbalance problem, we introduce the Weight-Task Consistency (WTC) into the iterative process of RPM by assigning larger weights to classes with fewer samples in the loss function. In addition, to cope with new attacks in real-world deployment, we propose an Active Adaption Resampling (AAR) method, which can better discover the distribution of unseen sample data and adapt the parameters of encoder. Experimental results show that our model outperforms the state-of-the-art semi-supervised attack detection methods with a 3% improvement in classification accuracy and a 90% reduction in training time.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods