Sensing-Aware Kernel SVM

2 Dec 2013Weicong DingPrakash IshwarVenkatesh SaligramaW. Clem Karl

We propose a novel approach for designing kernels for support vector machines (SVMs) when the class label is linked to the observation through a latent state and the likelihood function of the observation given the state (the sensing model) is available. We show that the Bayes-optimum decision boundary is a hyperplane under a mapping defined by the likelihood function... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet