Sensitive-Sample Fingerprinting of Deep Neural Networks

CVPR 2019  ·  Zecheng He, Tianwei Zhang, Ruby Lee ·

Numerous cloud-based services are provided to help customers develop and deploy deep learning applications. When a customer deploys a deep learning model in the cloud and serves it to end-users, it is important to be able to verify that the deployed model has not been tampered with... In this paper, we propose a novel and practical methodology to verify the integrity of remote deep learning models, with only black-box access to the target models. Specifically, we define Sensitive-Sample fingerprints, which are a small set of human unnoticeable transformed inputs that make the model outputs sensitive to the model's parameters. Even small model changes can be clearly reflected in the model outputs. Experimental results on different types of model integrity attacks show that we proposed approach is both effective and efficient. It can detect model integrity breaches with high accuracy (>99.95%) and guaranteed zero false positives on all evaluated attacks. Meanwhile, it only requires up to 103X fewer model inferences, compared with non-sensitive samples. read more

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here