Sensor Selection in High-Dimensional Gaussian Trees with Nuisances

We consider the sensor selection problem on multivariate Gaussian distributions where only a \emph{subset} of latent variables is of inferential interest. For pairs of vertices connected by a unique path in the graph, we show that there exist decompositions of nonlocal mutual information into local information measures that can be computed efficiently from the output of message passing algorithms... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet