Sentence Centrality Revisited for Unsupervised Summarization

ACL 2019  ·  Hao Zheng, Mirella Lapata ·

Single document summarization has enjoyed renewed interests in recent years thanks to the popularity of neural network models and the availability of large-scale datasets. In this paper we develop an unsupervised approach arguing that it is unrealistic to expect large-scale and high-quality training data to be available or created for different types of summaries, domains, or languages. We revisit a popular graph-based ranking algorithm and modify how node (aka sentence) centrality is computed in two ways: (a)~we employ BERT, a state-of-the-art neural representation learning model to better capture sentential meaning and (b)~we build graphs with directed edges arguing that the contribution of any two nodes to their respective centrality is influenced by their relative position in a document. Experimental results on three news summarization datasets representative of different languages and writing styles show that our approach outperforms strong baselines by a wide margin.

PDF Abstract ACL 2019 PDF ACL 2019 Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.