Sentiment Identification in Code-Mixed Social Media Text

4 Jul 2017  ·  Souvick Ghosh, Satanu Ghosh, Dipankar Das ·

Sentiment analysis is the Natural Language Processing (NLP) task dealing with the detection and classification of sentiments in texts. While some tasks deal with identifying the presence of sentiment in the text (Subjectivity analysis), other tasks aim at determining the polarity of the text categorizing them as positive, negative and neutral... Whenever there is a presence of sentiment in the text, it has a source (people, group of people or any entity) and the sentiment is directed towards some entity, object, event or person. Sentiment analysis tasks aim to determine the subject, the target and the polarity or valence of the sentiment. In our work, we try to automatically extract sentiment (positive or negative) from Facebook posts using a machine learning approach.While some works have been done in code-mixed social media data and in sentiment analysis separately, our work is the first attempt (as of now) which aims at performing sentiment analysis of code-mixed social media text. We have used extensive pre-processing to remove noise from raw text. Multilayer Perceptron model has been used to determine the polarity of the sentiment. We have also developed the corpus for this task by manually labeling Facebook posts with their associated sentiments. read more

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here